
SOFTWARE RELEASE METHODOLOGY

Annie Ibrahim Rana (MSCS03-9123), Muhammad Waseem (MSPM96-0334)

National University of Computer & Emerging Sciences

Abstract ~Software Release Management is an important key technology for
distributing the project/product to the customer. The key success factor of any
Software Product lies in how delicately the product is released to the customer. The
traditional SCM system does not guarantee to handle Release Management issues of
a complex system. Complex systems involve complex database, N-tiers just to name
a few. Each kind of application involves special technical consideration from a release
perspective. In this paper, we analyze different quality parameters related to the
release of a product. These parameters should be handled through Software Release
Model. The chosen model that supports those parameters is discussed. A controlled
environment is tested for those parameters through the use of this model.

Keywords ~software release management, software configuration management,
version control, stability, consistency, maintenance time, bugs, delta version model

1 Introduction

“Release management is the process
of planning, building, testing and
deploying hardware and software, the
version control and storage of
software.”[1] Release Management
process becomes vital in Product
Development & Deployment, it
basically manages the frequency of
Product releases and their levels, i.e.
full release or patches. Release
management is not just what goes into
the product development environment
but also how something goes into the
product development environment.

Implementing a true release model
results in two businesses benefits,
reduction in overall cost and improved
customer satisfaction. Intech Process
Automation (www.intechww.com) is in
the process of Product Development. It
is required to manage multiple
releases of a product. At the moment,
internal releases are continually
produced. Software Configuration

Management practices are formally
followed for Development and
producing internal releases. No special
consideration is being given to handle
multiple releases. The following are
the issues encountered while
producing multiple releases and need
to be taken care of:

 There are multiple clients using
multiple releases of the
product. Each client may
encounter issues. Those
issues may also exist in
other releases, so issues
should be resolved in all
victim releases and the client
should be served with the
appropriate patch. Organization
cannot pressurize client to go
for the latest release. It
involves legal as well as moral
issues. Moreover, Maintenance
should not have to fix the same
issue in all of the releases again
and again. The release model
should be able to handle issues

 Page 1 of 14

fixed in all of the releases of
the Product where that issue
exists. For example our product
has two releases versioned
1.1.0 and 1.2.0 running on
client sides C1 and C2
respectively. Client “C1” has
reported an issue in his release
i.e., 1.1.0, this issue should not
only be resolved in release
1.1.0 but also in release 1.2.0 if
the issue exists in that release
too.

 This mechanism will greatly

reduce the maintenance time
in the long run. Moreover client
C2 who has not yet reported
the bug will be more satisfied
and feel secured by having a
more stabilized release.

 The solution model should be

flexible to enable us to mark
the release as ready-to-market.
After marking any release as
ready-to-market, the particular
release will not be introduced to
any new functionality
enhancement.

Rather only bug fixes will be
introduced to ready-to-market
release. Such a process will always
be followed before shipping the
release to the customer. For
example a release R1 is going to
be shipped to customer C1 on
March, 2005; we will mark the

release as ready-to-market in Dec,
2004. After that no more
functionality will be added to
release R1 but just the bugs in
release R1 will be fixed. Such a
mechanism will ensure that release
R1 is made stabilized before
shipping to the customer C1. This
will also make sure that our release
is performing consistently over a
period of time.

A model needs to be adopted that
fulfills certain parameters identified in
a release. The parameters are
described above. One of the solution
models is Delta Versioning Model that
guarantees fulfilling the criteria
mentioned above. A brief introduction
of the model is given below.

2 The Delta Versioning
Model

According to this model, a delta is
generated for each version. It means
that each change in this model is
treated as a delta. It can be seen in
the following figure 2.1.

Let’s suppose there is an IO system for
notepad, and due to memory size
variation, we need to have two
different versions for each memory
size. Now the common module will be
kept separately as single copy for both
versions and we will have two variant
modules as deltas. Now if there is a

Delta for V1.2

I/O
System

for
Notepad

I/O
System for
Notepad

(V1)

Deltas V1.1

I/O
System for
Notepad

(V1)

Delta for V1.1

V 1.2

I/O System for
Notepad (V1)
(Base Version)

IO System V1.1

IO System V1.2

OR

Figure No. 2.1: Delta Versioning Mechanism

 Page 2 of 14

common change required in all
versions then we will make changes
only in the single copy of common
modules and if change is related to a
specific version then changes will be
made separately in corresponding
delta. This model is supported by the
ClearCase configuration management
tool.

2.1 Description of Delta
Version Model
“A delta is the difference between two
versions and serves to identify the
changes and to save space in the
repository [2].”

Versions differ with respect to specific
properties (e.g., represented by
versioned attributes).

The difference between two versions is
called a delta. This term suggests that
differences should be small compared
to invariants. Delta can be defined in
two ways (Figure): a symmetric delta
between two versions v1 and v2
consists of properties specific to both
v1 and v2 (v1 \ v2 andv2 \ v1,
respectively, where \ denotes set
difference); or a directed delta, also
called a change, is a sequence of
(elementary) change operations
op1...opm which, when applied to one
version v1, yields another version v2
(note the correspondence to
transaction logs in databases). In

practice, deltas are not necessarily
small. In the worst case, the common
part of v1 and v2 may even be empty.
In fact, items may undergo major
changes, and the common properties
may become smaller and smaller the
more versions are created. For
example, it is usually unrealistic to
assume that all versions of module
bodies realize the same interface. On
the other hand, common properties do
have to be asserted because otherwise
it does not make sense to group
versions at all. A way out of this
dilemma is multilevel versioning; that
is, a version may have versions
themselves [3].

Symmetric delta shown in figure 2.2 is
well suited for systems which have
common modules.

Figure 2.2: Symmetric delta and Directed delta

2.2 Delta Model for
Research Problem

There are three issues concerning a
release. First of all those issues are
defined in the following:

 Stability is defined as “The
condition of being stable or
resistant to change” and “the
quality of being free from
change or variation”. Customer
needs such a release that is
stable enough so that it does
not affect the processes
running on client-side. Our

 Page 3 of 14

product is meant for Oil & Gas
industry and will be installed on
plants. The prime concern of
the customer is that the release
should not disrupt his/her plant
operations in any way. It
should be made sure through
the stability of the product.
Stability will be calculated
through the number of bugs
reported and bugs fixed in a
release. This data will show
that either the release is going
towards stability or not. A trend
of bugs reported in the release
vs. bugs removed from the
release will show the stability
curve of any release. If the bug
reporting trend is declining, it
will show that the release is
going towards stability. This
should be made sure before
shipping the release to the
customer. And moreover,
severity of bugs is also
counted, severe and crucial
bugs fixation will be at high
priority, so one parameter to
check the stability of a release
can be measured in terms of
number of all reported severe
bugs (reported bugs relate to
perceived quality).

 Consistency is defined as

“Agreement or logical
coherence among releases
about common bug or bugs”
and “uniformity of successive
results or events”. A common
bug can be defined as a bug
shared by different releases.
For any release to become
consistent with other releases,
the common bugs should be
fixed in all victim releases, the
data could be taken from Bug
tracking system. Some of the
releases happen to produce the
same bug as produced by
previous releases and it may be
already fixed in any other
release. This tendency shows

the inconsistency among
releases regarding that
common bug. This
inconsistency needs to be
measured and minimized.

 Maintenance is defined as

“The work of keeping
something in proper condition”.
We need to maintain all of our
releases in proper condition.
Maintenance time can be
measured by looking at how
many times, a bug need to be
fixed by the maintenance team.
In fact if a common bug already
has been fixed in a release
during maintenance then same
maintenance time should be
utilized to fix that common bug
in other releases too. Again this
data will be made available
through bug tracking system.
In bug fixing not only the
Maintenance team is involved
but testing team and Issue
Management Committee is also
involved for this process. This
time should be lowered down
through use of appropriate
model.

It is required to have consistency in all
related version (horizontal (revisions),
vertical (variants)), stability in each
version and reduced maintenance
time. How this under discussion model
will achieve these all concerns or case
study objectives, let’s have a light
discussion on the delta versioning
model.

At Intech Process Automation,
functional modules are used to be
made for a desired system. Each
module is given a module id and all
modules baselines are kept in
repository. Different versions of
releases are tracked through the
traceability matrix. As we have gotten
the data related to releases but
common bug data is found only for
two versions, for example if we have

 Page 4 of 14

releases’ versions as v1.1, v1.2, v1.3,
v1.4…and so on but the common bug
data is found for version v1.1 and
v1.2, similarly for v1.3 and v1.4 and
so on, so the common modules for two
related versions (previous and
superseding versions) will be placed
under the base version lets call it
vb1.0, and differing modules will be
placed under the deltas for each
respective version, lets call them Vd1,
Vd2. At the moment, only 10 releases
are studied for the case study (this is
limitation of this case study) and
common bugs are tracked for only five
sets of releases and each set has two
releases as mentioned earlier. Now
let’s view the case problem at root
level. When ever a bug is reported in a
specific version, the bug is checked
and reported. Then bug is used to be
tracked in all related versions. If a bug
traces are found in other versions the
bug status is changed to common bug
(in our case there will be only two
releases common bugs), else it will
remain specific bug for that claiming or
reporting version. When a common
bug is traced in other versions, then
impacted modules are also traced and
tracked. If the target modules (most
likely to be changed to fix that
change) are in base version set of
modules then bug fixation will be done
at single place through the patch and
implicitly fixing the bug for all those
versions that are sharing the base
version set of modules. But if the
impacted modules exist in any of the
version delta then as modules are not
common or not shared in any other
version, then patch will be made
separately for each impacted module.

This does not implies that bug does
not exist in any other version, it may
exist, but here we are only concerned
with the common modules shared by
related versions, which has a common
bug. So in later case of bug fixation,
patch will be made for that respective
version module. And if more than two
versions have reported the same kind

of bug, and the impacted modules are
in respective deltas then individual
patches will be made for each version,
as impacted modules are in deltas
rather than in base version, so this
model will only do its best when a bug
fixation is need to be made for the
modules in the base version.

Now coming back to the case study
concerns, first we will talk about the
consistency among different versions.
We have defined the consistency for
the versions as, “The bug reported in a
version should be fixed in that
particular version as well as all other
impacted versions which have the
same bug in them”, and now this is
the time to rephrase the definition in
more technical way: “The bug reported
in a version should be fixed in that
particular version as well as in all
those versions which share the same
base version, and bug exists in base
version”. And the delta model will
assure this thing that a bug will be
fixed in all versions sharing the same
base version modules or bug will not
be fixed in any version sharing the
same base version, so in a way
making the versions consistent for the
common bug among them.

Our second concern of the case study
is stability of the versions, and now we
will discuss that how this model
stabilize versions. We have defined the
stability as, “A version will be
considered stable if there is not a
single bug exist in that version”, but
this is idealistic situation and
realistically impossible, but if it is
possible even then it is very hard to
attain such situation. Stability is a
subjective measure but our aim is to
define the stability of a version
objectively. We consider a version
stable when there is no bug reported
(perceived quality), and stability will
be minimized as reported bugs
increase. Now suppose there is a
version v.1.1 and version v1.2, version
1.2 supersedes the version v1.1. Now

 Page 5 of 14

if reported bug is in version 1.1 and
that bug also exists in version 1.2 then
it may possible that common bug is in
a common module. If we use delta
versioning model then it means the
common modules will be in the base
version. Now fixing the problem for
version 1.1 will also fix the problem for
version 1.2 implicitly, so even the bug
has not reported yet from version 1.2
but this model helps in reducing the
risk of bug (improves the actual
quality) so stabilizing the versions.

Our next concern of case study is
reduced maintenance time for
versions, and now we will discuss that
how delta versioning model achieves
above stated goal (reduced
maintenance time). We have defined
maintenance time as, “The time taken
for a bug or bugs fixation separately in
all impacted versions that have the
bug or bugs”. And with going again
into the architecture of the delta
version model, the bug fixation time
will be reduced through this model for
all impacted versions which have bug
or bugs in the base version. Because
early we were fixing a common bug in
common module of all impacted
versions as each version has its own
redundant copy of the module so it
was multiplying the time for bug
fixation in each version. But now this
will be done in lesser time with help of
the delta versioning model.

And one thing must be clear about
time, that we are measuring time in

number of transitions (a transition is
physical bug fixation attempt before
testing (unit, functional etc.).

The data has been made available by
Intech Process Automation as
described in Scope section. Moreover,
we have implemented the delta model
in the Test Environment and
investigated the performance of the
model against the parameters defined
earlier. The research methodology
used for this case study has been
described as follows:

3 The Test Environment
The model cannot be implemented
directly to the existing system. A test
environment needs to be created to
test the model that how the system
will perform using Delta model that is
selected for our research. In order to
analyze the model effectiveness, older
release(s) are selected to pass through
this model and examine the effect
against the parameters identified for
improvement in the existing system.
Certain steps have been taken in order
to implement the test environment
according to the model.

3.1 Identifying relationship
among Modules

In the current practice, different
releases do have common modules but
they are treated in isolation.

Different releases are shipped to
different customers. If both customers

Release 2Release 1

Figure 3.1: Releases relationship (before model implementation)

 Page 6 of 14

complain about same issue, the issue
needs to be resolved in both of the
releases. It is clear from the figure 3.1
that each release is treated in its
individuality despite the fact that each
release shares some commonality. The
delta model emphasizes to identify the
common modules in releases and
share them.

Each release has some commonality
with the other release. Moreover, each
release has some features not
available in other releases.

It is shown in figure 3.2 that the
common modules in releases are
identified and shared so that changes
in one releases are also incorporated
in the other release where those
features are shared.

For test purposes, three releases are
chosen as candidate. These releases
are tested for the delta model. The
focus is to test the releases for
common bugs. When the modules are
shared among releases, a common
bug fixed in release 1 will be
automatically fixed in release 2 as
well. The releases are tested to
eliminate the common bugs using the
model and it does not just work for
two releases, it can work for many
releases sharing some common
modules.

Consistency is automatically improved
as common issues are fixed in multiple
releases. In the existing system, a
change made to release 1 need to be

incorporated in release 2 as well
manually. A lot of in-consistencies are
introduced as of the manual process.
These inconsistencies are removed in
the test environment because a
change made in a shared module will
be automatically incorporated in the all
of the concerned releases.

3.2 Common Bugs in
Common Modules

Common bugs in common modules are
easy to fix.

Reason being the shared portion
between releases is taken out.
Whenever, a change is made in shared
potion in one release this change is
automatically incorporated in the other
release. The shared portion among
release is highlighted in Figure 3.2.

The test has to be conducted on some
old releases so that it could be seen
that what effect has been made by
using the delta model. Three releases
are selected being the candidate
release. Three releases are selected so
that we can make two set of releases
to compare with the old data for
common bugs. The selected releases
are 103, 104 and 105.

Each release set has been taken out
with old data in which the common
bugs are not fixed. Using the delta
model, the bugs are fixed using the
fixing code taken from old releases. In
this way, using the model, the bugs
are fixed to see the effect of the
model. Using the model we are able to

Release 2Release 1

Commonality

Figure 3.2: Releases relationship (after model implementation)

 Page 7 of 14

fix a common bug in more than one
releases with effort applied once.

3.3 Common Bugs in
Isolated Modules
A common bug can be present in two
releases in isolated modules. This
means that the module containing bug
is not shared. Now whenever a change
will be made in one release, it should
be made in the other release as well.
This change need to be incorporated
by the maintenance team. The isolated
modules are shown in Figure 3.1. This
is the portion in a release that has no
commonality.

3.4 Bugs Verification
In the release being built using the
delta model. Common bugs are tested
for fixation. A release is built using the
changed code of the release that has
fixed the bugs. The release is tested
against the test cases devised to find
that either the bug is fixed or not. The
data is again collected for the three
(3) candidate releases and then an
analysis is performed.

4 Hypothesis
We have proposed three research
hypotheses (different from statistical
hypothesis) based on the collected
data analysis to check the three
quality parameters (Stability,
Consistency and Maintenance Time)
for the delta versioning model. The
common bugs have a significant
impact on stability, consistency and
maintenance time apparently and
delta versioning model will hit the
common bugs in common files or
modules among different releases.

4.1 Hypothesis 1
The Delta versioning model will ensure
the stability in each release as if all
reported common bugs are fixed in
each release, this is again idealistic

myth. We want to check model
performance for stability, and stability
depends on the number of common
bugs. So stability is dependent
variable on number of common bugs
(ignoring individual bugs), we have
urged to get the impact of model on
stability after implementation:

Null Hypothesis (Ho): “There will be
no significant change in stability of a
release through fixation of common
reported bugs with the help of Delta
Versioning Model”

Alternate Hypothesis (H1): “There
will be a significant change in stability
of a release through fixation of
common reported bugs with the help
of Delta Versioning Model”

Here significant change indicates
increase in stability by decreasing the
number of common bugs (increment in
bugs is not a significant change).

We have formulated a formula based
on the threshold values for number of
bugs to check significant impact of
model on stability.

Let’s denote Stability with S, number
of fatal bugs with Bfat , number of
major bugs with Bmaj and number of
minor bugs with Bmin. The formula is:

Where
Cfat = Constant for threshold value for
fatal bugs where Cfat = 1
Cmaj = Constant for threshold value for
major bugs where Cmaj = 10
Cmin = Constant for threshold value for
minor bugs where Cmin = 30
Bfat = Number of fatal bugs where Bfat
= 0, 1 and if >1 then equivalent to 1
Bmaj = Number of major bugs where
Bmaj = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
and if >10 then equivalent to 10
Bmin = Number of minor bugs where
Bmin = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

[(Cfat-Bfat)(Cmaj-Bmaj)(Cmin-Bmin)]
S =

3

 Page 8 of 14

21, 22, 23, 24, 25, 26, 27, 28, 29, 30
and if >30 then equivalent to 30

The above formula shows that bugs
have linear relation with stability and
have direct impact on the value of
stability. It is really a hard decision to
get a linear relationship of stability and
reported bugs as measuring stability is
a complex task, here in formula we
have ignored many factors e.g.
customer’s view for significance of a
bug.

If there is one bug or more than one
fatal bugs in a release then stability
value will be zero, If there are ten or
more than ten major bugs then
stability of release will be zero and if
there are twenty or more than twenty
minor bugs then stability will be zero.
The number three (3) dividing the
formula is the constant to rationale the
formula to 100%.

We used simple data analysis
approach for hypothesis validity. We
have not used any statistical test
because of parameter values variation
as shown in above formula e.g. the
threshold value for major bugs is 10 in
any release but more than 10 bugs will
also be considered as 10.

4.2 Hypothesis 2
The model will ensure the consistency
in all releases as if all common bugs
reported are fixed in all impacted
releases. Consistency is a trivial case
as compared to stability. If there is a
common bug in two releases’ common
file or common module, and if one has
gotten a fixation for the bug and the
other have not got the fixation then
both releases will be inconsistent to
each other (initial they were consistent
as both releases were containing the
common bug in their common file or
common module). The delta version
model will increase the consistency as
the fixation for a common bug in
common file or module of two releases

will be made on both sides (both
releases).

Null Hypothesis (Ho): “There will no
significant change in consistency of
releases through fixation of common
reported bugs with the help of Delta
Versioning Model”

Alternate Hypothesis (H1): “There
will be a significant change in
consistency of releases through
fixation of common reported bugs with
the help of Delta Versioning Model”.

We have used simple data analysis
approach for the verifying the
hypothesis.

4.3 Hypothesis 3
The model will reduce the maintenance
time to half in terms of transactions as
if transactions required to fix common
bugs in releases is reduced as
compared to transaction to fix
common bugs in each release
separately.

Null Hypothesis (Ho): “There will be
no significant change in maintenance
time to fix common reported bugs with
the help of Delta Versioning Model”.

Alternate Hypothesis (H1): “There
will be a significant change in
maintenance time to fix common
reported bugs with the help of Delta
Versioning Model”.

Here significant change means
decrease in number of transitions
which indirectly indicates the decrease
in maintenance time. We have devised
a formula which can predict expected
number of transition for fixation of
common bugs in common files or
modules of different releases, this
formula is devised on the idea that
model will perform only one time effort
(transitions) to fix a common bug in
common files or modules of different
releases.

 Page 9 of 14

Let’s denote the number of transitions
with T, sum of all number of
transitions to fix common bugs in
common files or modules of different
releases with ∑Tr where Tr is number
of transitions to fix a common bugs in
each release, and total number of
releases having common bugs in
common files and modules with Nr.

Where
T = Number of transitions to fix
common bugs in common files or
modules of different related releases
after the implementation of the model.
Tr = Number of transitions to fix a
common bug in each release
Nr = Number of releases having
common bugs in common files and
modules

We have used simple data analysis
approach to check the validity of
hypothesis.

5 Hypotheses Metrics
This is an extra analysis effort to check
the precision of the deduced results
based on the data collected after the
implementation of the model. We have
tested hypotheses for delta versioning
model against three metrics as given
below:

∑CCV / ∑BCV (Tota
in each release /
reported in each r

Above metric is
validity of “hypo

tends to be zero then “hypothesis 1”
will be false and if value tends to be 1
then hypothesis will be true.

∑CCTV / ∑BCTV (Total common bugs
fixed in all releases having common
bugs / Total common bugs reported in
all releases having common bugs)

Above metric is used to check the
validity of “hypothesis 2”. If value
tends to be zero then “hypothesis 2”
will be false and if value tends to be 1
then hypothesis will be true.

∑TCCTV / ∑TSCCV (Total time of
common bugs fixed in all releases /
Total time of common bugs fixed
separately in each version)

Above metric is formulated to check
the validity of “hypothesis 3”. If value
of time metric resulted to be 1 the
“hypothesis 3” will be false for time,
and vise versa.

Model has been implemented and
monitored under test environment;
metrics data has been collected and
analyzed.

∑Tr

 T =
Nr

6 Discussion

6.1 Hypotheses Validation

6.1.1 Stability Hypothesis

Before Model Implementation After Model Implementation
Reported Bugs Stability Reported Bugs Stability

Release

Fatal Major Minor %age Fatal Major Minor %age

105 0 8 16 4% 0 1 16 42%
104 10 17 13 0% 5 7 11 0%

Table 6.1: Stability hypothesis validation
l common bugs fixed
 Total common bugs
elease)

used to check the
thesis 1”. If value

Delta versioning model could be tested
only for three releases 103, 104, and
105. Now we will check the stability of
each version before implementation of
the model.

 Page 10 of 14

The tabulated data in table 6.1 shows
that the values of stability of releases
104 and 105 are 0%, 0% and 4%
respectively before implementing the
model and after implementation of the
model values are 0%, 0% and 42%
respectively. So there is an
improvement in stability in two
releases 104, and 105 although the
stability of 104 is 0% and this is due
to its own fatal bugs (if we just look at
the common bugs fixation ratio then
ratio is 100%). By looking at the data
we can reject the null hypothesis, but
with some precincts due to limited
tested data.

6.1.2 Consistency Hypothesis
Now we will check the consistency of
each version with other version before
and after implementation of the
model.

We could just test consistency
between 104 and 105, and 104 and
103. We could not test for 103 and
102 so common bugs remained
untouched.

Above tabulated data shows that there
is no significant change in consistency,
though common bugs have been
removed completely, so model has not
caused any inconsistency among

different versions. So looking at the
above data, we reject the alternative
consistency hypothesis which claims
for a consistency improvement. One
aspect should be noted here that we
have not caught a single case with any
inconsistent releases having common
bugs before implementation of the
model.

6.1.3 Maintenance Time
Hypothesis

Now we will check the maintenance
time in terms of number of transition
to fix the bugs before and after
implementation of the model.

From above tabulated data, we can
see that the number of transitions to
fix common bugs in common files or
modules of two different releases has

become half of the number of
transitions before implementing the
model, which as accordance with the
formula. So we can reject the null
hypothesis.

We have not tested common bugs’
fixation of 103 and 102.

Before Model Implementation After Model Implementation Release
Number of Transition Number of Transition

105 98 49
104 238 119
103 112 112

Table 6.2: Maintenance time hypothesis validation

Before Model Implementation After Model Implementation
Common Bugs Consistency Common Bugs Consistency

Release

Fatal Major Minor YES/NO Fatal Major Minor YES/NO

105 0 7 0 Yes 0 0 0 Yes
104 5 10 2 Yes 0 0 0 Yes
103 3 4 1 Yes 3 4 1 Yes

Table 6.3: Consistency hypothesis validation

 Page 11 of 14

6.2 Metrics Verdict

∑CCV / ∑BCV (Total common bugs fixed
each release / Total common bugs
reported in each release)

No Releases ∑CCV / ∑BCV
1 105 7/7 = 1
2 104 17/17 = 1
3 103 0/8 = 0

Here we have taken the sum of all
fatal, major and minor bugs. Result
has proved the validity of “hypothesis
1”.

∑CCTV / ∑BCTV (Total common bugs
fixed in all releases having common
bugs / Total common bugs reported in
all releases having common bugs)

No Releases ∑CCTV / ∑BCTV

1 105 14/14 = 1
2 104 34/34 = 1
3 103 0/16 = 0

Here we have taken the sum of all
fatal, major and minor common bugs
in set of two releases (105 and 104,
104 and 103). Result has proved the
validity of “hypothesis 2” as model
keeps the consistency.

∑TCCTV / ∑TSCCV (Total time of
common bugs fixed in all releases /
Total time of common bugs fixed
separately in each version)

No Releases ∑TCCTV / ∑TSCCV

1 105 49/98 = 0.5
2 104 119/238 = 0.5
3 103 112/112 = 1

Result has proved the validity of
“hypothesis 3” as transitions have
been reduced to half.

7 Limitations of Study

There are many limitation of the
study; limitations are related to model,
prior study, test environment and
many other factors. The limitations are
discussed as follows:

Customer point of view for the major
and minor bugs in stability is missing
in stability formula, we have chosen a
specific threshold value for bugs, and
more work can be done to use
prioritized bugs.

There were thirty external releases
and hundreds of internal releases we
could just get data for only ten
releases.

Test Environment is very small, even
model works perfectly for common
bugs and supports our hypotheses
positively but tested data is only for
three releases.

We have just focused on the common
bugs in common files or modules of
different as studied model has only
access to only common bugs.

For stability, individual bugs are as
important as common bugs but as we
said earlier that due to model
limitations we could only fix common
bugs for stability.

Table 6.4: Hypothesis 1 Metric Validity

Table 6.5: Hypothesis 2 Metric Validity

8 Conclusion
The focus of the case study was to
devise a model to handle bug fixes for
multiple clients using the same
product but different versions. The
data analysis elaborates that different
releases should share common
modules among themselves so that
whenever some bug is fixed in one
release; it gets automatically fixed in

Table 6.6: Hypothesis 3 Metric Validity

 Page 12 of 14

the other release. Doing so will help
minimize maintenance time / cost.
Reason being a bug will need to be
fixed only once. If this behavior is
seen from a product’s perspective, it’s
a huge gain towards maintenance.

For a particular situation, we have
investigated the impact of number of
bugs on the stability, consistency and
maintenance time of the product by
analyzing the collected data. In
addition delta model has been
proposed to be utilized for taking the
shared modules among releases.

The product under consideration
consists of around 30-40 releases
belonging to Industrial Automation
industry. The scope of the study was
to take the data of 10 releases and out
of the 10 releases, 3 releases were
selected as candidate to be inducted
into a test environment to study the
proposed model effects.

To test our hypothesis, we have used
simple statistical technique to analyze
the stability of the release after taking
it through the delta model. The results
do not represent just a fixed trend
rather it shows that common bugs can
be taken care of easily. The time
required for maintenance is reduced,
more stable and more consistent
release is produced using the proposed
model.

The essence of making use of common
modules cannot only be applied to
multiple releases of a product rather it
could also be applied to multiple
products. Suppose, there is a BASE
product and on the basis of the BASE
product, a FLAVOR product is being
developed. The FLAVOR product has
extra features on top of the BASE
product. In order to achieve that
common modules approach can be
employed in FLAVOR product so that
whenever there is a change in BASE
product, it will be automatically
reflected in the FLAVOR product with

no extra cost. The same Delta model
can be used for this scenario. We have
not talked about it in our case study.
But BASE-FLAVOR relation needs to be
researched more.

9 Future Work
Future study can be conducted to try
to use the same methodology on
projects that belong to different
domains. The projects that usually
make use of a lot of reusable
components can be tested against this
model to examine its effectiveness.

Moreover, delta model effect must be
examined while using different
products. Multiple products with
multiple releases handling should be
checked. Moreover, a lot of other
parameters can be tested along with
stability, consistency and maintenance
time. The customer definition of bug’s
severity can be given more
importance. Maintenance time can be
calculated in actually man hours to see
the model effect for any
improvements.

10 References

[1] “Release Management”, by
British Educational
Communications and
Technology Agency,
http://www.becta.org.uk

[2] “A Case Study of
Configuration Management
with Clear Case in Industrial
Environment” by Ulf Asklund
& Boris Magnussun,
Proceedings of SCM7,
International Workshop on
Software Configuration
Management, R. Conaradi
(Ed.), Boston, May 1997.

[3] “Towards Virtual Software
Configuration Management –
A Case Study” by Tua
Rahikkala, Technical

 Page 13 of 14

Research Center of Finland,
2000

[4] “Transaction oriented
Configuration Management”
by Peter Fieler & Grace
Downy 1990, SEI Carnegie
Mellon University, 1990

[5] “IEEE standards for Software
Project Management Plans”
1998

[6] “The Past, Present, and
Future of Configuration
Management” by Susan A.
Dart, SEI Carnegie Mellon
University, 1992.

[7] “Configuration Management
(CM) Plans: The beginning to
your CM solutions” by Nadine
M. Bounds & Susan A. Dart,
SEI Carnegie Mellon
University, 1993.

[8] “Configuration Models in
Commercial Environments”
by Peter H. Feiler, SEI
Carnegie Mellon University,
1991.

[9] “Product-line development
requires sophisticated

software configuration
management” by Dijon,
FRANCE W. Schafer, IEEE
Computer Society
http://csdl.computer.org,
1996

[10] “Configuration management
with logical structures” by Yi-
Jing Lin, IEEE Computer
Society
http://csdl.computer.org,
1996

[11] “A Software Configuration
Management Model for
Supporting Component-Based
Software Development” by
Hond Mei, Lu Zhand, Fuqing
Yang, ACM SigSoft 2001.

[12] “Software Release
Methodology” by Michael E.
Bays, Prentice Hall PTR, 2003

[13] “An Integrative Model for
Configuration Management
and Version Control” by Lars
Bendix, 1996

[14] “Managing Software Process”
by Watts S. Humphrey,
Pearson Education Inc, 2002

 Page 14 of 14

